Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2761: 209-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427239

RESUMO

Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-3/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Insaturados , Ácidos Graxos , Encéfalo
2.
RSC Adv ; 13(40): 28198-28210, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37753401

RESUMO

Global concern regarding the energy crisis and environmental pollution is increasing. The fabrication of efficient catalysts remains a long-term goal. Recently, green synthesis methods for catalyst fabrication have attracted the scientific community. Herein, a simple approach to synthesize bismuth zirconate-hydroxyapatite (BZO-HA) nanocomposites using Mentha spicata (mint) leaves as a reducing agent via a combustion method has been reported. The use of a green reducing agent provided economic attributes to this work. Among the prepared samples, the BZO-HA (20%) composite exhibited superior photocatalytic activity. The photodegradation efficiency of the composite reached 90.3% and 98.4% for methylene blue (MB) and rose Bengal (RB) dyes, respectively. The results showed the excellent optical performance of the prepared composites. The constructed sensor (BZO-HA 20%) for the very first time showed outstanding selectivity and performance towards sensing lead nitrate and dextrose compared to bare bismuth zirconate (BZO) and hydroxyapatite (HA). A three-electrode system using 0.1 M KCl was used for the study. The synthesized composite BZO-HA (20%) can sense lead nitrate and dextrose over the concentration range of 1-5 mM in the potential range from -1.0 V to +1.0 V. The BZO-HA composite was also investigated against Gram-negative (S. typhi) and Gram-positive (S. aureus) bacteria for antibacterial activity studies. Enhanced antibacterial activity was observed compared to bare BZO and HA catalysts. Thus, the prepared BZO-HA nanocomposite exhibited multifunctional applications.

3.
Heliyon ; 9(5): e15933, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215805

RESUMO

Biosynthesis of nanoparticles is increasingly becoming popular due to the demand for sustainable technologies worldwide. In the present investigation, Acmella oleracea plant extract fuelled combustion technique followed by calcination at 600 °C was adopted to prepare nanocrystalline Ca2Fe2O5. The prepared nano compound was characterised using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Ultra Violet (UV) spectroscopy, Infrared (IR) spectroscopy and its role was assessed for photocatalytic pollutant degradation along with bactericidal action in the concentration range of 1 µg/mL to 320 µg/mL. The photocatalytic degradation efficiency of pollutant drugs Clopidogrel Bisulphate and Asprin used for cardiovascular disorders is around 80% with 10 mg/L photocatalyst. The results showed that the photocatalytic activity increased with rising pH from 4, to 10, along with a significant antibacterial action against Enterococcus faecalis bacteria and a slight cytotoxic effect at high concentrations. The antibacterial property was reinforced by Minimum inhibitory concentrations (MIC) and Minimum bactericidal concentrations (MBC) studies with an average value of 0.103 at 600 nm which was further proved by significant anti-biofilm activeness. Adhesion tests in conjunction with cryogenic-scanning electron microscopy displayed a morphological change through agglomeration that caused an expansion in nano particles from 181 nm to 223.6 nm due to internalization followed by inactivation of bacteria. In addition, the non-toxicity of nano Ca2Fe2O5 was confirmed by subtle cytological changes in microscopic images of Allium Cepa root cells in the concentration range 0.01-100 µg/mL and a slight inhibition in HeLa cell proliferation indicated by IC50 value of 170.94 µg/mL. In total, the current investigation for the first time reveals the application of bio based synthesis of Nano Ca2Fe2O5 to new possibilities in bioremediation namely degrading cardiovascular pharmaceutical pollutants, endodontic antibacterial action and cytological activity.

4.
Biotechnol Lett ; 44(10): 1175-1188, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35997914

RESUMO

More than a thousand tonnes of fish bone wastes can be transformed into biomedical products annually. Alkaline hydrolysis and thermal calcification were used to create nanosized hydroxyapatite (HAp) crystals from Silver carp bone wastes. Biophysical tests were used to determine the nano size and chemical composition of synthesised hydroxyapatite. Alkaline hydrolysis hydroxyapatite (AH-HAp) was 58.3 nm, while Thermal calcination hydroxyapatite (TC-HAp) was 64.3 nm in size, confirmed by Atomic Force Microscopy. Energy Dispersive X-ray Analysis studies showed Ca/P (Calcium phosphate) ratio of AH-HAp to be 1.65, whereas TC-HAp as 1.45, confirming AH-HAp to be organically rich along with a similar Ca/P ratio as natural HAp. Fourier Transform Infrared Spectroscopy spectra indicated HAp formation from both procedures, however AH-HAp had superior crystallinity than TC-HAp confirmed from X-Ray Diffraction spectra. MG63 osteoblast cell lines showed 91% cell viability in cytotoxicity studies and 70.1% proliferation efficiency in Alkaline Phosphatase assay, which was higher than TC-HAp. The present study shows that HAp produced via alkaline hydrolysis has better biocompatibility which enhances its applicability as a biomaterial, than HAp synthesized through thermal calcination, which tends to incinerate organic moieties.


Assuntos
Carpas , Durapatita , Fosfatase Alcalina , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Durapatita/química , Osteoblastos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Luminescence ; 32(3): 414-424, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27620118

RESUMO

Cr3+ -doped Y2 O3 (0.5-9 mol%) was synthesized by a simple solution combustion method using Aloe vera gel as a fuel/surfactant. The final obtained product was calcined at 750°C for 3 h, which is the lowest temperature reported so far for the synthesis of this compound. The calcined product was confirmed for its crystallinity and purity by powder X-ray diffraction (PXRD) studies which showed a single-phase nano cubic phosphor. The particles size estimated by Scherrer formula was in the range of 6-19 nm. The UV-vis spectra showed absorption bands at 198, 272 and 372 nm having band gap energy in the range 4.00-4.26 eV. In order to investigate the possibility of its use in white light emitting display applications, the photoluminescence properties of Cr3+ -doped Y2 O3 nanophosphors were studied at an excitation wavelength in the near ultraviolet (UV) light region (361 nm). The emission spectra consisted of emission peaks in the blue (4 F9/2  â†’ 6 H15/2 ), orange (4 F9/2  â†’ 6 H13/2 ) and red (4 F9/2  â†’ 6 H11/2 ) regions. The CIE coordinates (0.33, 0.33) lie in the white light region. Hence Y2 O3 :Cr3+ can be used for white light-emitting diode (LED) applications.


Assuntos
Cromo/química , Nanopartículas/química , Oxigênio/química , Raios Ultravioleta , Ítrio/química , Luminescência , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 152: 404-16, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26241826

RESUMO

Green synthesis of multifunctional Zinc oxide nanoparticles (NPs) with a variety of morphologies were achieved by low temperature solution combustion route employing neem (Azadirachta indica) extract as fuel. The nanoparticles were characterized by PXRD, FTIR, XPS, Raman and UV-Visible spectroscopic studies. The Morphologies were studied by SEM and TEM analysis. The NPs were subjected for photoluminescence, photocatalytic, antibacterial and antioxidant activity studies. PXRD pattern confirmed the hexagonal wurtzite structure of the product. SEM images indicated the transformation of mushroom like hexagonal disks to bullets, buds, cones, bundles and closed pine cone structured NPs with increase in the concentration of neem extract in reaction mixture. The NPs exhibited prominent green emission due to the presence of intrinsic defect centers. The as-formed bullet shaped ZnO with 4ml of neem extract was found to decolorize Methylene blue (MB) under Sunlight and UV light irradiation. The antibacterial studies indicated that ZnO NPs of concentration 500, 750 and 1000µg resulted in significant antibacterial activity on Klebsiella aerogenes and Staphylococcus aureus but not against Escherichia coli and Pseudomonas aeruginosa in agar well diffusion method. Further, ZnO NPs exhibited significant antioxidant activity against scavenging DPPH free radicals. The current investigation demonstrated green engineering method for the synthesis of multifunctional ZnO NPs with interesting morphologies using neem extract.


Assuntos
Antibacterianos/química , Antioxidantes/química , Substâncias Luminescentes/química , Nanoestruturas/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Catálise , Enterobacter aerogenes/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Química Verde/métodos , Humanos , Substâncias Luminescentes/farmacologia , Nanoestruturas/ultraestrutura , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Raios Ultravioleta , Óxido de Zinco/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-26125993

RESUMO

The study reports green mediated combustion route for the synthesis of Tb(3+) ion activated Y2O3 nanophosphors using Aloe Vera gel as fuel. The concentration of Tb(3+) plays a key role in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Tb(3+) nanophosphors were characterized by PXRD, SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Tb(3+) ion concentration on structural morphology, UV-visible absorption and PL emission were investigated systematically. The PL emission of Y2O3: Tb(3+) (1-11 mol%) nanophosphors were studied in detail under 271 and 304nm excitation wavelengths. The CIE coordinates lies well within green region and correlated color temperature values were found to be 6221 and 5562K under different excitations. Thus, the present phosphor can serve as an excellent candidate for LEDs. Further, prismatic Y2O3: Tb(3+) (3 mol%) nanophosphor showed significant antibacterial activity against Pseudomonas desmolyticum and Staphylococcus aureus. The present study successfully demonstrates Y2O3: Tb(3+) nanophosphors can be used for display applications as well as in medical applications for controlling pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biomimética , Substâncias Luminescentes/farmacologia , Nanopartículas/química , Térbio/química , Ítrio/química , Antibacterianos/química , Cristalização , Luminescência , Substâncias Luminescentes/química , Microscopia Eletrônica de Transmissão , Temperatura , Difração de Raios X
8.
Artigo em Inglês | MEDLINE | ID: mdl-25985135

RESUMO

Facile and green route was employed for the synthesis of Y2O3:Dy(3+) (1-11 mol%) nanostructures (NSs) using Aloe vera gel as fuel. The formation of different morphologies of Y2O3:Dy(3+) NSs were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Dy(3+) ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of NSs were investigated. NSs exhibited an intense warm white emission with CIE chromaticity coordinates (0.32, 0.33) and average CCT value ∼5525 K which corresponds to vertical day light. The control of Dy(3+) ion on Y2O3 matrix influences the photocatalytic decolorization of Metanil Yellow as a model compound was evaluated. The enhanced photocatalytic activities of core shell structured Y2O3:Dy(3+) (1 mol%) was attributed to co-operation effect of dopant concentration, crystallite size, textural properties and capability for reducing electron-hole pair recombination. Further, the recycling catalytic ability of Y2O3:Dy(3+) (1 mol%) nanostructure was also evaluated and found promising photocatalytic performance with negligible decrease in decolorization efficiency even after sixth successive cyclic runs. Considering its green, facile synthesis and recyclable feature from an aqueous solution, the present Y2O3:Dy(3+) (1 mol%) nanophosphor can be considered as one of the ideal photocatalyst for various potential applications.


Assuntos
Disprósio/química , Química Verde/métodos , Luz , Nanoestruturas/química , Itérbio/química , Compostos Azo/química , Catálise , Corantes/química , Cristalização , Cinética , Luminescência , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Pós , Espectrofotometria Ultravioleta , Temperatura , Difração de Raios X
9.
Artigo em Inglês | MEDLINE | ID: mdl-25978012

RESUMO

Spherical shaped cerium dioxide (CeO2) nanoparticles (NPs) were synthesized via bio mediated route using Leucas aspera (LA) leaf extract. The NPs were characterized by PXRD, SEM, UV-Visible techniques. Photoluminescence (PL), photocatalysis and antibacterial properties of NPs were studied. PXRD patterns and Rietveld analysis confirm cubic fluorite structure with space group Fm-3m. SEM results evident that morphology of the NPs was greatly influenced by the concentration of LA leaf extract in the reaction mixture. The band gap energy of the NPs was found to be in the range of 2.98-3.4 eV. The photocatalytic activity of NPs was evaluated by decolorization of Rhodamine-B (RhB) under UVA and Sun light irradiation. CeO2 NPs show intense blue emission with CIE coordinates (0.14, 0.22) and average color coordinated temperature value ∼148,953 K. Therefore the present NPs quite useful for cool LEDs. The superior photocatalytic activity was observed for CeO2 NPs with 20 ml LA under both UVA and Sunlight irradiation. The enhanced photocatalytic activity and photoluminescent properties were attributed to defect induced band gap engineered CeO2 NPs. Further, CeO2 with 20 ml LA exhibit significant antibacterial activity against Escherichia coli (EC) and Staphylococcus aureus (SA). These findings show great promise of CeO2 NPs as multifunctional material for various applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cério/química , Cério/farmacologia , Nanopartículas/química , Catálise , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Corantes Fluorescentes/química , Humanos , Lamiaceae/química , Luz , Luminescência , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fotólise , Extratos Vegetais/química , Rodaminas/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-25988816

RESUMO

MgO:Fe(3+) (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe(3+) ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe(3+) NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe(3+) on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe(3+) (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron-hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices.


Assuntos
Química Verde/métodos , Ferro/química , Luminescência , Óxido de Magnésio/química , Nanopartículas/química , Catálise , Cor , Cristalização , Sequestradores de Radicais Livres/química , Azul de Metileno/química , Nanopartículas/ultraestrutura , Pós , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Raios Ultravioleta , Difração de Raios X
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 140: 516-23, 2015 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25638435

RESUMO

Mg2SiO4:Sm3+ (1-11 mol%) nanoparticles were prepared by a rapid low temperature solution combustion route. The powder X-ray diffraction (PXRD) patterns exhibit orthorhombic structure with α-phase. The average crystallite size estimated using Scherer's method, W-H plot and strain-size plots were found to be in the range 25-50 nm and the same was confirmed by Transmission Electron Microscopy (TEM). Scanning electron microscopy (SEM) pictures show porous structure and crystallites were agglomerated. The effect of Sm3+ cations on luminescence of Mg2SiO4 was well studied. Interestingly the samples could be effectively excited with 315 nm and emitted light in the red region, which was suitable for the demands of high efficiency WLEDs. The emission spectra consists of four main peaks which can be assigned to the intra 4-f orbital transitions of Sm3+ ions 4G5/2→6H5/2 (576 nm), 4G5/2→6H7/2 (611 nm), 4G5/2→6H9/2 (656 nm) and 4G5/2→6H11/2 (713 nm). The optimal luminescence intensity was obtained for 5 mol% Sm3+ ions. The CIE (Commission International de I'Eclairage) chromaticity co-ordinates were calculated from emission spectra, the values (0.588, 0.386) were close to the NTSC (National Television Standard Committee) standard value of red emission. Coordinated color temperature (CCT) was found to be 1756 K. Therefore optimized Mg2SiO4:Sm3+ (5 mol%) phosphor was quite useful for solid state lighting.


Assuntos
Substâncias Luminescentes/química , Nanoestruturas/química , Samário/química , Compostos de Silício/química , Luminescência , Nanoestruturas/ultraestrutura , Difração de Raios X
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 141: 149-60, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25668696

RESUMO

We report the synthesis of Y2O3: Eu(3+) (1-11 mol%) nanoparticles (NPs) with different morphologies via eco-friendly, inexpensive and simple low temperature solution combustion method using Aloe Vera gel as fuel. The formation of different morphologies of Y2O3: Eu(3+) NPs were characterized by PXRD, SEM, TEM, HRTEM, UV-Visible and PL techniques. The PXRD data and Rietveld analysis confirms the formation of single phase Y2O3 with cubic crystal structure. The influence of Eu(3+) ion concentration on the morphology, UV-Visible absorption, PL emission and photocatalytic activity of Y2O3: Eu(3+) nanostructures were investigated. Y2O3: Eu(3+) NPs exhibit intense red emission with CIE chromaticity coordinates (0.50, 0.47) and correlated color temperature values at different excitation ranges from 1868 to 2600 K. The control of Eu(3+) ion on Y2O3 matrix influences the photocatalytic decolorization of methylene blue (MB) as a model compound was evaluated under UVA light. Enhanced photocatalytic activity of conical shaped Y2O3: Eu(3+) (1 mol%) was attributed to dopant concentration, crystallite size, textural properties and capability of reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers followed the order SO4(2-)>Cl(-)>C2H5OH>HCO3(-)>CO3(2-). These findings show great promise of Y2O3: Eu(3+) NPs as a red phosphor in warm white LEDs as well as eco-friendly heterogeneous photocatalysis.


Assuntos
Biomimética/métodos , Európio/química , Química Verde , Luz , Substâncias Luminescentes/química , Nanoestruturas/química , Óxidos/química , Ítrio/química , Aloe/química , Catálise/efeitos da radiação , Corantes/química , Cristalização , Sequestradores de Radicais Livres/química , Géis/química , Cinética , Azul de Metileno/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Pós , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura , Difração de Raios X
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 241-51, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25068837

RESUMO

Novel crystalline tetragonal ZrO2: Eu(3+) phosphors were prepared by a facile and efficient low temperature solution combustion method at 400±10 °C using oxalyl dihydrazide (ODH) as fuel. The powder X-ray diffraction patterns and Rietveld confinement of as formed ZrO2: Eu(3+) (1-11 mol%) confirmed the presence of body centered tetragonal phase. The crystallite size estimated from Scherrer's and W-H plots was found to be in the range of 7-17 nm. These results were in good agreement with transmission electron microscopy studies. The calculated microstrain in most of the planes indicated the presence of tensile stress along various planes of the particles. The observed space group (P42/nmc) revealed the presence of cations in the 2b positions (0.75, 0.25, 0.25) and the anions in the 4d positions (0.25, 0.25, 0.45). The optical band gap energies estimated from Wood and Tauc's relation was found to be in the range 4.3-4.7 eV. Photoluminescence (PL) emission was recorded under 394 and 464 nm excitation shows an intense emission peak at 605 nm along with other emission peaks at 537, 592, 605 and 713 nm. These emission peaks were attributed to the transition of (5)D0→(7)FJ (J=0, 1, 2, 3) of Eu(3+) ions. The high ratio of Intensity of ((5)D0→(7)F2) and ((5)D0→(7)F1) infers that Eu(3+) occupies sites with a low symmetry and without an inversion center. CIE color coordinates indicated the red regions which could meet the needs of illumination devices.


Assuntos
Európio/química , Luminescência , Medições Luminescentes/métodos , Nanopartículas/química , Temperatura , Zircônio/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pós , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica , Difração de Raios X
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 1027-37, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25459629

RESUMO

ZnAl2O4:Cr(3+) nanophosphors were synthesized for the first time by a simple and environment friendly route using Calotropis procera milk latex as fuel. The structural and surface morphological studies were carried out using powder X-ray diffraction (PXRD), scanning electron microscopy and transmission electron microscopy techniques. The photoluminescence (PL) properties of ZnAl2O4:Cr(3+) as a function of dopant concentration and calcination temperature was studied in detail. The PXRD patterns and Rietveld confinement confirmed the cubic crystal system with space group Fd-3m. The crystallite size estimated from Scherrer's and W-H plots was found to be in the range of 16-26 nm. The PL spectrum shows an intense peak at ∼688 and ∼699 nm assigned to spin-forbidden (2)Eg→(4)A2g transition of Cr(3+) ions. The PL measurements for two excitations (∼410 and 527 nm) and with respect to calcination temperature indicated no significant change in the shape and position of emission peak except PL intensity. The CIE chromaticity coordinates lies well within the white region. Thermoluminescence (TL) studies revealed well resolved glow peak at ∼212°C with a small shoulder at 188 and 233°C. The glow peak intensity at ∼212°C increases linearly with γ-dose which suggest ZnAl2O4:Cr(3+) is suitable candidate for radiation dosimetric applications. The activation energy (E in eV), order of kinetics (b) and Frequency factor (s) were estimated using glow peak shape method.


Assuntos
Compostos de Alumínio/química , Calotropis/química , Luminescência , Medições Luminescentes , Nanopartículas/química , Nanotecnologia/métodos , Óxidos/química , Compostos de Zinco/química , Cristalização , Cinética , Nanopartículas/ultraestrutura , Pós , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...